
【講義メモ】 担当：平野正喜（ひらのまさき） 

この講座ではプロジェクタに講義メモを書きながら進めます。この文字サイズの読める席に

お座りください。 

18:15～20:45（途中休憩有）。受講者数は１３人です。 

この講義メモは講義終了と同時に下記のサイトにPDFで掲載し、ダウンロード可能にします。

ご利用ください。次回予告も掲載します。質問やコメントが送信可能です。 

https://tkuip.rundog.org 
前回の１問： 提案依頼書は？ ア ＳＯＡ イ ＡＳＰ ウ ＲＦＩ エ ＲＦＰ 正解はエ 

p.101「4-1-2 テストの種類」 から 

・【補足】単体テスト：プログラムまたはその部品であるモジュールごとのテストで、通常、作成

者が行う。プログラミングと対応する位置のテスト。 

・【補足】結合テスト：モジュールやプログラムを複数組み合わせた状態でのテスト。内部設計

に対応し、内部設計と同様に、ベンダ側のみで行う。 

・【補足】システムテスト：システム全体でのテスト。外部設計に対応し、ユーザ側の協力を得

て行うことが多い。※ここまではテスト用のデータ（ダミーデータ）を用いる 

・【補足】運用テスト：実際の運用状態（本番環境）でのテスト。要件定義に対応し、要件定

義と同様に、ユーザ主導で行う。 

・【補足】退行テスト：主に運用テストで行うもので、この開発や変更により、周辺に悪影響を

与えていないかのテスト。レグレッションテスト、回帰テストともいう。 

 ※「退行」とは「進化」の反対 

・ホワイト（透明な、中身の見える）ボックステスト：仕様書やプログラムリストを基に行うテスト

で、主に、単体テストや結合テストの前半の手法。基の資料に対してのテストの網羅率で進

捗（進み遅れ）を評価する 

・ブラック（中身の見えない）ボックステスト：設計書や要件定義書を基に行うテストで、機能

が要件どうりかをチェックする。主に、結合テストの後半以降の手法。 

・【補足】ゴンペルツ曲線：信頼度成長曲線ともいい、時系列でバグ（問題点）検出累積数を

グラフ化したもの。システムのテストでは「まだ見つけていないバグがある可能性」をゼロにで

きないが、十分なテストを行い、新たなバグの検出が一定期間見られなければテストを終了

できるというモデル。ゴンペルツ曲線が斜めＳ字になり先端が平らであれば該当する。 

※ 急激に検出数が増える時期があるのが特徴で、これが無い場合、先端が平らになっても

「テストが進んでいない状況」を判断される。 

p.102 4-1-3 ソフトウェアの見積り 

・【補足】ソフトウェアの見積り：テストの終了判断と同様に、ソフトウェア開発に必要なコスト

（期間×人数）を予測する＝見積ることは難しい。そこでいくつかの手法が提案され、最も

初期から用いられたのが「経験値による見積り」で技術の進化や複雑度の上昇などにより、

誤差が大きくなりやすい。 

・ＣＯＣＯＭＯ＝コンストラクティブ（積算）コストモデル：システムの規模（処理数、行数）を予

測し、開発者の能力などから計算した値で見積もる。正確な見積りにはなりづらい。 

・ＦＰ＝ファンクション（機能）ポイント（点数）法：システムに必要な機能を、画面数、ファイル

数、外部との接続数のような数えられる数で示し、これに種類に応じたウェイト（重み）掛け

た値をＦＰとする。ＦＰの合計を基にコストを算出する。よって、経験のない（浅い）システムで

も、正確な見積りになりやすい。 

https://tkuip.rundog.org/


p.103 4-2-1 おもなソフトウェア開発の手法 

・【補足】 初期の手法：「手順のプログラム化」だったので、手順が複雑な場合、絡み合う形

になり、理解や改良が難しいものになりやすかった。 

・【補足】 構造化手法：プログラムを「順次」「選択（分岐）」「繰返し（ループ）」の３構造（図は

p.164）のみで構築する手法。可読性（読みやすさ）と保守性（改造しやすさ）が向上する。 

・【参考】 構造化手法による改良の一例 

左：悪例＝構造化されていない 

右：判断◇や処理□の内容を見直して、２構造化

したもの。 

・【補足】オブジェクト指向：構造化手法までは「デー

タ」と「処理」が別々で、作成者の考え方に依存し

やすい。そこで、「データ」と「処理」をまとめた「オブ

ジェクト」を単位としてシステムを構築する手法。 

・【補足】プロパティ：オブジェクト指向におけるデー

タ 

・【補足】メソッド：オブジェクト指向における「処理」 

・【補足】クラス：オブジェクト指向におけるオブジェクトの設計図で、プロパティの形式や、メソ

ッドの内容などを記述したものなので、プログラムに該当する 

・【補足】インスタンス：クラスを基にしてメモリ上に生成される実行用の実体。実際のデータ

を持つ。例： ＲＰＧの場合、スライムやドラゴンはクラス。実体になるスラリンやリムルやヴェ

ルドラはそれぞれのクラスから生成されたインスタンスとなる。 

・【補足】カプセル化：データをインスタンスに持つことで、複数の関連するデータをまとめて扱

える（例：スライムの名前、ＨＰ、ＭＰ）。加えて、これらを扱う仕組みをメソッドにすれば、不適

切なデータ（例：マイナスの身長）の発生を防げること。バグの防止になる。 

・【補足】クラス図：ＵＭＬに含まれる図法の一つで、目の形の枠の中に、クラス名、プロパティ

（データ）、メソッド（処理）を記述する。 

・【補足】 ＵＭＬ＝ユニファイド（統合された）モデリングランゲージ（図法）：オブジェクト指向の

各種の概念や設計結果を記述するための統一図法群。 

p.104 4-2-2 おもなソフトウェア開発モデル 

・【補足】ソフトウェア開発モデル：旧来のソフトウエア開発では開発中の

手戻りや要件の不一致、開発期間の長期化、低品質になりやすかった。

この対策としての開発方法論。 

・【補足】ウォータフォールモデル：「滝のモデル」で手戻りの防止と、開発

段階の明示が主目的。工程の完了時に行うレビューがポイント。大規模

システム向きで長期化は避けられない。 

・【補足】プロトタイピングモデル：「試作品モデル」で外部設計を終えたら

試作品を作成して、ユーザに確認してもらうことで手戻りや要件の不一

致を防止する手法。主に小規模システム向きでユーザの協力次第なの

が懸念点。 

・【補足】スパイラルモデル：「渦のモデル」でシステムをサブシステムに分

割し、中核的なものから順に企画→設計→開発→テストを繰り返す。

上記２つの折衷案。分割を誤ると破綻しやすい。 



・ＲＡＤ＝ラピッド（快速）アプリケーション・デベロップメント（開発）：開発ツールの利用、ユー

ザの協力や参画などにより開発期間を短縮する手法。小規模で低難度な場合に可能。 

p.105 4-2-3 アジャイル 

・【補足】アジャイル：主に小規模システムの開発を短いサイクルで反復することで、短期開

発と環境への変化への対応を可能にする考え方。複数の手法がある。 

・ＸＰ＝エクストリーム（先進的な）プログラミング：アジャイルを構成する手法群で、チームに

よる短期開発の要点と実践手法が含まれている。 

・【補足】ペアプログラミング：ＸＰの実践手法の１つで、プログラミングを２人１組で行うこと

で、作成時点で品質を上げるのが目的。 

・ＤｅｖＯｐｓ＝デベロッパー（開発者）オペレータ（運用者）：開発チームと運用チームが開発

時点から協力することで、短期開発と環境への変化への対応を可能にすること 

・【補足】スクラム：計画から実装までをできるだけ小さな単位に分割したもの（スプリント）を、

チームに割り当てて短期間で完成することを継続的に行う手法。 

・【補足】プロダクトバックログ：実現が必要な要素のリストのこと（※アジャイル以外では、バ

ックログというと「積み残し」「作業の山」と悪いイメージだが） 

・【補足】スプリントバックログ：各スプリントで行う作業のリストのこと（スケジュールと同じ） 

p.107 4-2-4 開発プロセスに関するフレームワーク 

・ＳＬＣＰ＝ソフトウェア・ライフサイクル（生成から再利用/破棄への繰返し）プロセス：企画

から開発・運用・保守までの一連の作業のことで、保守を得て前方の工程に戻るのでサイク

ル構造になるか、利用されなくなって廃棄される。 

・【補足】共通フレーム：ＳＬＣＰの用語と定義を標準化したガイドライン 

・【補足】ＳＬＣＰにおける開発プロセスの特徴：外部設計を「システム要件定義」と「システム

方式設計」としている。内部設計を「ソフトウェア要件定義」「ソフトウェア方式設計」「ソフト

ウェア詳細設計」としている（※「ソフトウェア詳細設計」はプログラミングとする場合もある）。

プログラミングと単体テストを「プログラム構築」としている。結合テストを「ソフトウェア結合」

「ソフトウェア適格性確認テスト」、システムテストを「システム結合」、運用テストを「システム

適格性確認テスト」としている。また、テスト後に「導入」「受入れ支援」がある。 

・【補足】 Ｖ字型モデル：同じ高さになる工程が対になり、同じ文書を作成・利用する。 

・ＣＭＭＩ＝ケイパビリティ（成熟度）マチュリティ（成長）モデル・インテグレーション（統合）：主

にソフトウェア開発チームや工程を改善するために、現在の段階と、今後の目標を示すもの。

５段階あり、常に問題の分析・防止・改善が可能な最適化状態が最上位。 

第５章 プロジェクトマネジメント 

p.116 5-1-1 プロジェクトマネジメント 

・【補足】 プロジェクト：既存の組織では対応が難しい、一時的な任務に対応する特命チーム。

定常業務には対応せず、対応完了後には解散する（永続しない）。 

・【補足】プロジェクトマネジメント：既存の組織における管理手法とは異なる「プロジェクト向

けの管理手法群」 

・【補足】プロジェクトマネージャ：予算管理などを行う管理者で、通常、プロジェクトリーダとは

兼任しない 

・ＰＭＢＯＫ＝プロジェクトマネジメント・ボディ・オブ・ナレッジ（知識体系）：プロジェクト管理の

技法や用語をまとめたもので、プロジェクト管理の国際標準になっている。プロジェクト管理

を５つのプロセス群にまとめている。「終結プロセス群」があるのがポイント。 



・【補足】 プロジェクト憲章：プロジェクトの目的・背景・概略を記述したもの。立ち上げ時に作

成。 

・【補足】 ステークホルダ：利害関係者。プロジェクトの場合、プロジェクトの影響を少しでも受

ける全ての人や団体のこと。プロジェクト管理の対象。 

・【補足】 スコープ：元の意味は「視野（見える範囲）」。プロジェクトの場合、作業対象のこと

で。成果物や対象項目で示す。プロジェクト管理の対象。 

・ＷＢＳ＝ワーク（作業）ブレイクダウン（分解）ストラクチャ（構造）：スコープ（成果物や対象項

目）を分析するために作成する階層図。 

・ワーク（作業）パッケージ（単位）：ＷＢＳにおける最下層の作業単位で、管理可能（作業者

への割り当てやスケジュール化など）が可能なレベルまで分割した結果。（※必要以上に分

割しないことがポイント） 

・【補足】統合マネジメント：すべてのプロセス群にかかわるマネジメント項目群。 

・【補足】タイムマネジメント：主にスケジュール管理と作業時間の見積りのこと。 

・【補足】資源マネジメント：主に人的資源＝プロジェクトチームの管理 

・【補足】マイルストーン：元の意味は一里塚で、プロジェクトの進捗管理の目安となる地点＝

イベントのこと。例：設計説明会開催日、テスト開始日 （※期間のことではない） 

・【補足】アクティビティ：マネジメント項目のこと（例：プロジェクト憲章の作成） 

・ＰＥＲＴ＝プログラム（工程表）エヴァリューション（評価）＆レビュー（確認）テクニック（技

法）：アローダイヤグラムにより、工程の流れを評価・確認する技法。 

・ガントチャート：アローダイヤグラムでは表現しづらい予実対比（予定と実績の差の対比）を

明示できる図法。時系列の横棒グラフで項目ごとに予定と実績を示す。 

・ＰＭＯ＝プロジェクト・マネジメントオフィス（管理部門）：プロジェクトの終結時に成果物など

を受け取る組織で、成果物の散逸を防ぎ、次のプロジェクトに活かす。プロジェクトのサポート

も行う。 

 

今日の１問： 成熟度モデルは？ ア ＣＭＭＩ イ ＰＭＯ ウ ＷＢＳ エ ＲＡＤ 

次回予告： 第６章「サービスマネジメント」から 

 


